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Sin(x)/x Interpolation: An Important Aspect of Proper Oscilloscope Measurements 
 

By Chris Rehorn, Agilent Technologies 

 
Digitizing real-time oscilloscopes provide the backbone of high speed time-domain measurements made in the 

industry today. Modern oscilloscopes use high-speed digitizers to capture the input signal. An oscilloscope’s 

sample rate is often touted as a banner specification for the instrument; higher being better. In reality, as long 

as the rules of Nyquist are not violated, an oscilloscope can reconstruct a user’s signal identically. This 

reconstruction process is often referred to as sin(x)/x interpolation. Whether the sample rate is 25x the Nyquist 

frequency, or 2.5x the Nyquist frequency, interpolation can be used to reproduce the waveform exactly as it 

appeared at the oscilloscopes input connector, removing all doubt about a signal’s behaviour between samples.  

 

Nyquist Revisited 
One of the fundamental concepts taught in signal processing courses is the concept of sampling. In its simplest 

form, sampling is the process by which a continuous time signal is “sampled” at discrete points in time, 

rendering a collection of samples that create a discrete time signal. Dr. Harry Nyquist’s most famous theorem 

proposes that a signal can be reconstructed perfectly from discrete samples if the following two rules are 

observed: 

 

1. The highest frequency component sampled must be less than half the sampling frequency and 

2. Samples must be acquired in equally spaced intervals. 

 

These concepts are familiar to most engineers and are by no means new or novel. Their application, however, is 

of utmost importance in understanding how digitizing oscilloscopes reconstruct the user’s signal from discrete 

samples.  

 

Interpolation Basics 
Sampling is a relatively straight-forward process in which a continuous time signal is converted into a discrete 

time signal. The method by which the continuous time signal is reconstructed from its samples is just as 

important. Although there are many methods to perform signal reconstruction, sin(x)/x interpolation is the 

method used by most modern-day oscilloscopes. This interpolation method is of significant value because the 

original waveform can be identically reconstructed using this method. 

 

Assume x(t) is a time-domain waveform. If x(t) is sampled by a pulse train, s(t) then the sampled signal xx(t) can 

be expressed as: 
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where the sample pulse train can be expressed as  
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The expression in (2) is a simple pulse train of infinite length. This pulse train is shown in Figure 1, for positive 

values of n. 
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Figure 1: Sample pulses shown in the time domain. Note T is the sample period. 

 
Recalling basic signal processing theory, multiplication in the time domain is equivalent to convolution in the 

frequency domain.  
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The Fourier Transform of the impulse train can be represented by an infinite sum of impulses in the frequency 

domain, scaled by the inverse of the sample period. This is expressed in (4) and shown in Figure 2. 
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Figure 2: The Fourier Transform of a pulse train in the time domain is a pulse train the frequency domain, 

separated by integer multiples of 1/T, where T is the sample period used to sample the original analog waveform. 

 
The value of 1/T is deemed the sample frequency, or fs. The convolution given in (3) is depicted graphically in 

Figure 3. Only the magnitude spectra has been shown for the various signals. 
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Figure 3: Convolution of the input signal X(f) (a) with the sample pulse train S(f) (b) produces a frequency 

spectrum magnitude shown in (c). Note that (c) is simply a repetition of the spectrum shown in (a) at integer 

multiples of 1/T. The value of 1/T is referred to as the sampling frequency, or fs. 

 

Figure 3 clearly indicates that the sampled waveform frequency spectrum is simply a repetition of the original 

waveform spectrum by integer multiples of fs. This figure indicates that for larger values of T, the sampling 

period, the repeating frequency spectra will begin to overlap each other. This is what is referred to as aliasing. 

This effect is shown in Figure 4. 
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Figure 4: Aliasing occurs when T, the sample period, becomes excessively large. Convolving (a) with (b) produces 

the frequency spectrum shown in (c). High frequency components of the image spectrum “impose” themselves on 

low frequency components of the original signal spectrum. 

 

If the spectrum of the analog signal input has frequency content above f = 1/(2T) the signal will alias, as shown 

in Figure 4. This frequency has a special name. It is known as the Nyquist Frequency can be expressed as  
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Assuming that the analog input signal has no frequency content above fN, the original signal content can be 

reconstructed from the discrete time waveform. By rejecting the higher frequency content above fN in Figure 3 

(c), the original analog waveform spectrum is recovered. Compare this scenario with that shown in Figure 4. The 

original signal spectrum cannot be recovered by simply rejecting frequencies above fN because the spectrum has 

been corrupted after sampling. An ideal rectangular filter will accomplish this task for the non-aliased case. The 

filter simply accepts all frequency content below fN and perfectly rejects all higher frequency content. By 

multiplying the spectrum of the sampled signal with the rectangular filter, the original spectrum is recovered. 

This is depicted in Figure 5.  
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Figure 5: Multiplying the sampled spectrum (a) by an ideal rectangular filter (b) yields the original analog signal 

spectrum (c). Notice that the low-pass filter has infinite slope at the Nyquist frequency. This is a lot of poles, 

zeroes, or taps, for the DSP-savvy readers. 

 

Perhaps the most amazing concept behind this type of reconstruction is that the original waveform is exactly 

recovered from the sampled waveform using the rectangular interpolation filter. This interpolation method is 

what is often referred to as sin(x)/x, or sinc(x) interpolation. So where does this name come from? 

Recall that multiplication of signals in the frequency domain is equivalent to convolving signals in the time 

domain. Also, recall that the Inverse Fourier Transform of a rect function in the frequency domain, is a sinc 

function in the time domain. The rect function shown in Figure 5 (b) can be expressed as a sinc function in the 

time domain: 
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And, finally, the interpolated waveform can be expressed in terms of the sampled waveform and the sin(x)/x 

interpolation filter: 
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where x[n] is the set of discrete time samples obtained during the sampling process, and has a spectrum 

identified by that shown in Figure 5 (a). 
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Practical Implementation of sin(x)/x Interpolation 
The mathematics behind the sin(x)/x interpolation, while elegant, lend little help in actual implementation of the 

algorithm. The interpolation method requires an infinite amount of sample points before and after the nth point 

being interpolated. In reality, however, FIR filters can be designed to closely replicate the sin(x)/x reconstruction 

filter, with a finite number of samples. This is precisely what Agilent oscilloscopes implement while acquiring a 

user’s signal. Once the signal is digitized, the discrete samples are passed through various filters; one of these 

being an interpolation filter used to reconstruct the waveform on screen. 

 

In modern oscilloscopes, it is not unheard of to see instruments boasting sampling rates 25x higher than the 

specified oscilloscope bandwidth. Often this gives customers a feeling they are not “missing” events occurring 

between samples. From the mathematics shown above, however, as long as the Nyquist criteria are not violated, 

a sampling rate of 2 fN is sufficient! 

 

Engineers often worry about glitches occurring between samples that are not acquired by the oscilloscope. If a 

glitch occurs between samples, however, the input signal exceeds the bandwidth of the instrument being used. 

With either an analog or digital oscilloscope, the signal path will low-pass filter this glitch, spreading its energy 

out in time and reducing its amplitude. This bandwidth limited glitch will be sampled by the digital oscilloscope 

and will be seen no better or worse than on an analog oscilloscope.  

 

So, why aren’t oscilloscope sampling rates exactly 2x higher than the oscilloscope’s bandwidth? This is because 

out-of-band signals may only be attenuated by 10 dB beyond the band-edge of the instrument. Said differently, 

the frequency response of the oscilloscope does not roll-off infinitely fast and some buffer room is used on the 

sampling rate to minimize aliasing. More on signal aliasing later. 

 

A practical example of sin(x)/x reconstruction is shown below. A simple script was written to create a) an analog 

signal, b) a sampled version of the analog signal and c) a new waveform of data points reconstructed from the 

sample points using sin(x)/x interpolation. In each figure, the analog waveform is shown in blue, the sampled 

waveform shown in red, and the interpolated data points are shown with black triangles.  

 

Suppose a 1 GHz sinusoidal wave is digitized at 25 GS/s. This is a factor 12.5 higher in sampling rate than what 

is ideally needed for proper reconstruction. This scenario is shown in Figure 6. Note that the red stars 

correspond to samples taken of the sinusoid. The blue waveform represents the original analog signal, and the 

black triangles represent the waveform reconstructed from sin(x)/x interpolation.  
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Figure 6: When a 1 GHz sinusoidal waveform is digitized at 25x the fundamental frequency, “connect-the-dots” 

interpolation is hard to separate from the ideal reconstruction, and the original waveform. 

 
The waveforms shown in Figure 6 are visually appealing to an oscilloscope user because it is easy to associate 

the samples with the original signal. Even if the interpolation algorithm is disabled by the oscilloscope user, the 

samples themselves accurately portray the signal that was present at the instrument’s input.  

 

Suppose the sampling rate is reduced by an order of magnitude to 2.5x the original signal’s frequency, or 2.5 

GS/s. This scenario is shown in Figure 7. Even at this lower sample rate, the Nyquist Theorem is not violated. 

The red stars mark the sample locations of the original signal. “Connect-the-dots” reconstruction is shown along 

with sin(x)/x interpolated data.  
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Figure 7: When the sampling rate is only 2.5x the highest frequency, it is less obvious to the eye what the analog 

waveform looked like before sampling. Provided the Nyquist criteria are maintained, sin(x)/x interpolation can 

be used to identically reproduce the waveform, just as it was when the sample rate was 10 times higher. 

 
The reduced sample rate makes it less obvious what waveform existed from the samples extracted. Sin(x)/x 

interpolation reconstructs the analog waveform true to its original form, even at this drastically reduced sample 

rate. 

 

Most oscilloscope users are not measuring ideal sinusoidal tones. Figure 8 shows an ideal square wave consisting 

of the first, third and fifth harmonics of a 200 MHz square wave. The waveform is sampled at 2.5 GS/s, exactly 

2.5 times faster than the fifth harmonic of the waveform.  

 



-9- 

 

 
Figure 8: A 200 MHz square wave consisting of the 1st, 3rd, and 5th harmonics can be ideally reconstructed using 

sin(x)/x interpolation, as long as the Nyquist criteria are maintained during sampling. 

 
Figure 8 clearly shows that the sin(x)/x reconstruction filter perfectly reconstructs the waveform from the 

samples taken at a rate 2.5 times faster than the highest frequency content of the waveform. 

 
A Note about Aliasing 
The above cases show interpolation on signals that do not violate the Nyquist criteria. If, however, a signal with 

significant frequency content above fN is digitized, aliasing will occur. In this case, it is no longer possible to 

reconstruct the original waveform exactly as it existed before sampling because high frequency components of 

the original signal now appear as lower frequency components after the sampling process has occurred. This is 

certainly not acceptable in a high-fidelity system. 

 

To prevent aliasing, two fundamental items can be addressed in a digitizing system: 

1) An anti-alias filter can be designed to reject all high-frequency content above fN. 

2) The sample rate can be increased to an arbitrarily high frequency such that fN is above the highest 

significant frequency component of the signal being digitized. 

 

In some systems, one might imagine a case where increased sample rate is inexpensive, compared to a higher-

order anti-alias filter. In this case, it may be more practical to increase the sample rate to compensate for the 

slow roll-off of the anti-alias filter, instead of designing a more complex filter.  

 

For more information about aliasing, and its effect on oscilloscope measurements, please refer to Agilent 

Application Note 1587, available from http://www.agilent.com. 

 

 

 

http://www.agilent.com/
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Make Some Measurements… 
An oscilloscope with more sampling rate is not always better. The signal at the input of the oscilloscope is 

properly reconstructed after digitization by the sin(x)/x reconstruction filter, if the input signal does not contain 

frequency content above and beyond the Nyquist frequency. It may be tempting to disable interpolation to see 

the “raw samples”, but this is not necessary. The interpolated waveform is not a “guess” at what the signal was 

doing between samples, it is exactly what the signal was doing between samples. So now, go out in confidence 

with interpolation enabled on your instrument, and make some measurements, because that is the fun part 

anyway! 
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